Smart Sensing提供了一种更轻松,方便的数据驱动机制,用于在建筑环境中监视和控制。建筑环境中生成的数据对隐私敏感且有限。 Federated Learning是一个新兴的范式,可在多个参与者之间提供隐私的合作,以进行模型培训,而无需共享私人和有限的数据。参与者数据集中的嘈杂标签降低了表现,并增加了联合学习收敛的通信巡回赛数量。如此大的沟通回合需要更多的时间和精力来训练模型。在本文中,我们提出了一种联合学习方法,以抑制每个参与者数据集中嘈杂标签的不平等分布。该方法首先估计每个参与者数据集的噪声比,并使用服务器数据集将噪声比归一化。所提出的方法可以处理服务器数据集中的偏差,并最大程度地减少其对参与者数据集的影响。接下来,我们使用每个参与者的归一化噪声比和影响来计算参与者的最佳加权贡献。我们进一步得出表达式,以估计提出方法收敛所需的通信回合数。最后,实验结果证明了拟议方法对现有技术的有效性,从交流回合和在建筑环境中实现了性能。
translated by 谷歌翻译
随着人们的生活水平的增强和通信技术的快速增长,住宅环境变得聪明且连接,从而大大增加了整体能源消耗。由于家用电器是主要的能源消费者,因此他们的认可对于避免无人看管的用途至关重要,从而节省了能源并使智能环境更可持续。传统上,通过从客户(消费者)收集通过智能插头记录的电力消耗数据,在中央服务器(服务提供商)中培训设备识别模型,从而导致隐私漏洞。除此之外,当设备连接到非指定的智能插头时,数据易受嘈杂的标签。在共同解决这些问题的同时,我们提出了一种新型的联合学习方法来识别设备识别,即Fedar+,即使使用错误的培训数据,也可以以隐私的方式跨客户进行分散的模型培训。 Fedar+引入了一种自适应噪声处理方法,本质上是包含权重和标签分布的关节损耗函数,以增强设备识别模型的能力,以抵制嘈杂标签。通过将智能插头部署在公寓大楼中,我们收集了一个标记的数据集,该数据集以及两个现有数据集可用于评估Fedar+的性能。实验结果表明,我们的方法可以有效地处理高达$ 30 \%$的嘈杂标签,同时以较大的准确性优于先前的解决方案。
translated by 谷歌翻译
尿液分析是检测泌尿系统相关问题的标准诊断测试。尿液分析的自动化将降低整体诊断时间。最近的研究使用了尿道显微数据集来设计基于深度学习的算法来分类和检测尿液细胞。但这些数据集没有公开可供进一步研究。为了减轻尿Datsets的需要,我们制备尿泥沉积物微观图像(UMID)数据集,其包含约3700个细胞注释和3类细胞即RBC,PU和上皮细胞。我们讨论了准备数据集和注释所涉及的若干挑战。我们将数据集公开提供。
translated by 谷歌翻译
Existing federated classification algorithms typically assume the local annotations at every client cover the same set of classes. In this paper, we aim to lift such an assumption and focus on a more general yet practical non-IID setting where every client can work on non-identical and even disjoint sets of classes (i.e., client-exclusive classes), and the clients have a common goal which is to build a global classification model to identify the union of these classes. Such heterogeneity in client class sets poses a new challenge: how to ensure different clients are operating in the same latent space so as to avoid the drift after aggregation? We observe that the classes can be described in natural languages (i.e., class names) and these names are typically safe to share with all parties. Thus, we formulate the classification problem as a matching process between data representations and class representations and break the classification model into a data encoder and a label encoder. We leverage the natural-language class names as the common ground to anchor the class representations in the label encoder. In each iteration, the label encoder updates the class representations and regulates the data representations through matching. We further use the updated class representations at each round to annotate data samples for locally-unaware classes according to similarity and distill knowledge to local models. Extensive experiments on four real-world datasets show that the proposed method can outperform various classical and state-of-the-art federated learning methods designed for learning with non-IID data.
translated by 谷歌翻译
The rise in data has led to the need for dimension reduction techniques, especially in the area of non-scalar variables, including time series, natural language processing, and computer vision. In this paper, we specifically investigate dimension reduction for time series through functional data analysis. Current methods for dimension reduction in functional data are functional principal component analysis and functional autoencoders, which are limited to linear mappings or scalar representations for the time series, which is inefficient. In real data applications, the nature of the data is much more complex. We propose a non-linear function-on-function approach, which consists of a functional encoder and a functional decoder, that uses continuous hidden layers consisting of continuous neurons to learn the structure inherent in functional data, which addresses the aforementioned concerns in the existing approaches. Our approach gives a low dimension latent representation by reducing the number of functional features as well as the timepoints at which the functions are observed. The effectiveness of the proposed model is demonstrated through multiple simulations and real data examples.
translated by 谷歌翻译
Landing an unmanned aerial vehicle unmanned aerial vehicle (UAV) on top of an unmanned surface vehicle (USV) in harsh open waters is a challenging problem, owing to forces that can damage the UAV due to a severe roll and/or pitch angle of the USV during touchdown. To tackle this, we propose a novel model predictive control (MPC) approach enabling a UAV to land autonomously on a USV in these harsh conditions. The MPC employs a novel objective function and an online decomposition of the oscillatory motion of the vessel to predict, attempt, and accomplish the landing during near-zero tilt of the landing platform. The nonlinear prediction of the motion of the vessel is performed using visual data from an onboard camera. Therefore, the system does not require any communication with the USV or a control station. The proposed method was analyzed in numerous robotics simulations in harsh and extreme conditions and further validated in various real-world scenarios.
translated by 谷歌翻译
Multiple studies have focused on predicting the prospective popularity of an online document as a whole, without paying attention to the contributions of its individual parts. We introduce the task of proactively forecasting popularities of sentences within online news documents solely utilizing their natural language content. We model sentence-specific popularity forecasting as a sequence regression task. For training our models, we curate InfoPop, the first dataset containing popularity labels for over 1.7 million sentences from over 50,000 online news documents. To the best of our knowledge, this is the first dataset automatically created using streams of incoming search engine queries to generate sentence-level popularity annotations. We propose a novel transfer learning approach involving sentence salience prediction as an auxiliary task. Our proposed technique coupled with a BERT-based neural model exceeds nDCG values of 0.8 for proactive sentence-specific popularity forecasting. Notably, our study presents a non-trivial takeaway: though popularity and salience are different concepts, transfer learning from salience prediction enhances popularity forecasting. We release InfoPop and make our code publicly available: https://github.com/sayarghoshroy/InfoPopularity
translated by 谷歌翻译
The ability for an agent to continuously learn new skills without catastrophically forgetting existing knowledge is of critical importance for the development of generally intelligent agents. Most methods devised to address this problem depend heavily on well-defined task boundaries, and thus depend on human supervision. Our task-agnostic method, Self-Activating Neural Ensembles (SANE), uses a modular architecture designed to avoid catastrophic forgetting without making any such assumptions. At the beginning of each trajectory, a module in the SANE ensemble is activated to determine the agent's next policy. During training, new modules are created as needed and only activated modules are updated to ensure that unused modules remain unchanged. This system enables our method to retain and leverage old skills, while growing and learning new ones. We demonstrate our approach on visually rich procedurally generated environments.
translated by 谷歌翻译
We present a novel hybrid learning method, HyLEAR, for solving the collision-free navigation problem for self-driving cars in POMDPs. HyLEAR leverages interposed learning to embed knowledge of a hybrid planner into a deep reinforcement learner to faster determine safe and comfortable driving policies. In particular, the hybrid planner combines pedestrian path prediction and risk-aware path planning with driving-behavior rule-based reasoning such that the driving policies also take into account, whenever possible, the ride comfort and a given set of driving-behavior rules. Our experimental performance analysis over the CARLA-CTS1 benchmark of critical traffic scenarios revealed that HyLEAR can significantly outperform the selected baselines in terms of safety and ride comfort.
translated by 谷歌翻译
Remote sensing imagery provides comprehensive views of the Earth, where different sensors collect complementary data at different spatial scales. Large, pretrained models are commonly finetuned with imagery that is heavily augmented to mimic different conditions and scales, with the resulting models used for various tasks with imagery from a range of spatial scales. Such models overlook scale-specific information in the data. In this paper, we present Scale-MAE, a pretraining method that explicitly learns relationships between data at different, known scales throughout the pretraining process. Scale-MAE pretrains a network by masking an input image at a known input scale, where the area of the Earth covered by the image determines the scale of the ViT positional encoding, not the image resolution. Scale-MAE encodes the masked image with a standard ViT backbone, and then decodes the masked image through a bandpass filter to reconstruct low/high frequency images at lower/higher scales. We find that tasking the network with reconstructing both low/high frequency images leads to robust multiscale representations for remote sensing imagery. Scale-MAE achieves an average of a $5.0\%$ non-parametric kNN classification improvement across eight remote sensing datasets compared to current state-of-the-art and obtains a $0.9$ mIoU to $3.8$ mIoU improvement on the SpaceNet building segmentation transfer task for a range of evaluation scales.
translated by 谷歌翻译